
OPTIMAL α̂n

This document is supplemental to the paper Cube–root–n and faster convergence, Laplace estimators,

and uniform inference by Jun, Pinkse, and Wan (2009). We show here that if q = 1 and αn is replaced

in the definition of θ̂ with α̂n = ĉ∗2 5
√

n, then the resulting estimator ˘̂θ satisfies

n2/5( ˘̂θ− θ0)
d→ N

( b∗11
c∗4

, c∗2V
)

,

provided that ĉ∗ = c∗ + op(1) and c∗ ∈ int T ∗, a compact subset of R, entirely consisting of

positive values. An implication is that the ‘optimal’ choice of cα of our estimator without using a

bias–correction scheme can be replaced with a consistent estimate without affecting its optimality

properties.

There is nothing special about q = 1. The only part of the proof below that even uses q is lemma

6, whose proof is essentially already in the paper. Provided that a prior is chosen that removes the

bias up to arbitrary order q̃, then q could be chosen equal to q̃, essentially without modifications

other than a correction to the rate at which αn diverges.

From hereon take αn = 5
√

n. Highlighted assumptions, lemmas and equations are references to

the August 2009 version of our paper.

Let

S̆n(t, c) = cS̃n(t/c2) = c
√

nαnSn(θ0 + t/αnc2) = c
√

αn/n
n

∑
i=1

g̃i(θ0 + t/αnc2).

Under assumption G, S̆n(·, c) w→ G(·, c) = G(·) in `∞(T1, T2, · · · ) for any fixed c > 0. We will show

that we can regard c as an extra index without losing weak convergence.

Lemma 1. S̆n
w→ G in `∞(T1 ×T ∗, T2 ×T ∗, · · · ).

Proof. By theorem 1.6.1 of van der Vaart and Wellner, it suffices to show the weak convergence in

`∞(Ti ×T ∗) for arbitrary i. We instead establish the equivalent result that for any i, ˘̆Sn
w→ G̃ in

T̆i ×T ∗, where ˘̆Sn(t/c2, c) = S̆n(t, c), G̃(t/c2, c) = G(t, c), and T̆i = {s : c2s ∈ Ti, c ∈ T ∗}.

Pick some i. Note that ˘̆Sn(t, c) = cS̃n(t) and recall from the main paper that S̃n
w→ G in `∞(T̆i).

Since the convergence of finite marginals is trivial, we only establish asymptotic tightness. Let T∗ be

an arbitrary subset of T̆i. Then

sup
t1,t2∈T∗

| ˘̆Sn(t1, c1)− ˘̆Sn(t2, c2)| ≤ |c1 − c2| sup
t1∈T∗

|S̃n(t1)|+ |c2| sup
t1,t2∈T∗

|S̃n(t1)− S̃n(t2)|, (1)

1
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where RHS1 is op(1) as |c1 − c2| → 0, and RHS2 is op(1) as the diameter of T∗ tends to zero due to

the tightness of S̃n. Therefore, S̆n is asymptotically tight in `∞(T̆i ×T ∗), and the weak convergence

in `∞(T̆i ×T ∗) follows. 2

Lemma 2.

S̆n(·, ĉ)− S̆n(·, c∗) w→ 0 in `∞(T1, T2, . . .) and sup
t∈Rd

|S̆n(t, ĉ)− S̆n(t, c∗)|
‖t‖2 + 1

= op(1).

Proof. The proof of the second stated result is nearly identical to that of lemma A2 in view of the

first stated result. We hence establish the first result (weak convergence). By theorem 1.6.1 of van der

Vaart and Wellner, it suffices to establish the weak convergence in `∞(T ) for arbitrary compact set

T . Define a mapping O : `∞(T ×T ∗)×T ∗ → `∞(T ) by O(ğ, c) = ğ(·, c)− ğ(·, c∗). For all ğ, c

for which supt∈T |ğ(t, c)− ğ(t, c∗)| is continuous at c, O is continuous at (ğ, c) with respect to the

product metric. Therefore, by the continuous mapping theorem, O(S̆n, ĉ) w→ O(G, c∗) = 0 because

G is a Gaussian process and hence supt∈T |G(t, c)−G(t, c∗)| is continuous. 2

Let Q̆n(t, c) = c4α2
nQ(θ0 + t/αnc2) and π̆n(t, c) = π(θ0 + t/αnc2). Let β̂n =

√
ĉ6α3

n/n.

Lemma 3.
∫

π̆n(t, ĉ)tS̆n(t, ĉ) exp
(
Q̆n(t, ĉ)

)
dt−

∫
π̆n(t, c∗)tS̆n(t, c∗) exp

(
Q̆n(t, c∗)

)
dt = op(1).

Proof. The absolute value of the LHS of the lemma statement is for some finite order polynomial P

bounded by

sup
t

∣∣S̆n(t, ĉ)− S̆n(t, c∗)
∣∣

‖t‖2 + 1

∫
‖P(t)‖

∣∣π̆n(t, ĉ)
∣∣ exp

(
Q̆n(t, ĉ)

)
dt

+ sup
t

∣∣S̆n(t, c∗)
∣∣

‖t‖2 + 1

∫
‖P(t)‖

∣∣π̆n(t, ĉ) exp
(
Q̆n(t, ĉ)

)
− π̆n(t, c∗) exp

(
Q̆n(t, c∗)

)∣∣dt

= op(1)Op(1) + Op(1)op(1), (2)

by lemma 2 and the dominated convergence theorem, noting that π̆n(t, c) is only nonzero for values

of (t, c) for which θ0 + t/αnc2 ∈ Θ, such that by lemma A5 for such values of (t, c), Q̆n(t, c) ≤

−min(c4α2
ncq, tᵀVt/4). 2

Lemma 4. For j = 0, 1,
∫

π̆n(t, ĉ)tj{exp
(

β̂nS̆n(t, ĉ)
)
−∑

j
s=0
(

β̂nS̆n(t, ĉ)
)s} exp

(
Q̆n(t, ĉ)

)
dt/β̂

j+1
n =

Op(1).

Proof. By lemma A6, it suffices to show that∫
‖t‖j|π̆n(t, ĉ)| exp

(∣∣β̂nS̆n(t, ĉ)
∣∣+ Q̆n(t, ĉ)

)
dt = Op(1), (3)
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or indeed that

sup
c∈T ∗

∫
‖t‖j|π̆n(t, c)| exp

(∣∣c3βnS̆n(t, c)
∣∣+ Q̆n(t, c)

)
dt = Op(1).

Let c̄ = maxc∈T ∗ c and c = minc∈T ∗ c and make the substitution s = t/c2 to obtain

sup
c∈T ∗

{
c2(d+j)

∫
‖s‖j|πn(s)| exp

(
c4βn|S̃n(s)|+ c4Qn(s)

)
ds
}

≤ c̄2(d+j)
∫
‖s‖j‖πn(s)‖ exp

(
c̄4βn|S̃n(s)|+ c4Qn(s)

)
ds = Op(1),

by part (ii) of lemma A9. 2

Lemma 5.
1

β̂n

∫
π̆n(t, ĉ)t

{
exp

(
β̂nS̆n(t, ĉ)

)
− 1
}

exp
(
Q̆n(t, ĉ)

)
dt d→ N

(
0, C2

VVN
)
.

Proof. The LHS is equal to

∫
π̆n(t, ĉ)tS̆n(t, ĉ) exp

(
Q̆n(t, ĉ)

)
dt

+
1

β̂n

∫
π̆n(t, ĉ)t

(
exp

(
β̂nS̆n(t, ĉ)

)
− 1− β̂nS̆n(t, ĉ)

)
exp

(
Q̆n(t, ĉ)

)
dt, (4)

where the first term converges in distribution to the stated normal distribution by lemmas 3 and

lemma D3, and the second term is negligible by lemma 4. 2

Lemma 6.
1

β̂n

∫
π̆n(t, ĉ)t exp

(
Q̆n(t, ĉ)

)
dt =

b∗11
c∗5

+ op(1).

Proof. Define R̆n(t, ĉ) = Q̆n(t, ĉ) + tᵀVt/2 and follow the steps of the proof of theorem 5 for q =

1. 2

Lemma 7. ∫
π̆n(t, ĉ) exp

(
β̂nS̆n(t, ĉ) + Q̆n(t, ĉ)

)
dt

p→ π0CV .

Proof. The LHS is equal to∫
π̆n(t, ĉ) exp

(
Q̆n(t, ĉ)

)
dt +

∫
π̆n(t, ĉ)

(
exp

(
β̂nS̆n(t, ĉ)

)
− 1
)

exp
(
Q̆n(t, ĉ)

)
dt (5)

where the second term is negligible by lemma 4. The first term has the same limit as
∫

π̆n(t, c∗) exp
(
Q̆n(t, c∗)

)
dt

by the dominated convergence theorem, which is π0CV by lemma D1. 2
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Lemma 8. If q = 1 and scaling α̂n is used in lieu of αn,

n2/5( ˘̂θ− θ0)
d→ N

( b∗11
c∗4

, c∗2V
)

.

Proof. Follows from the above results. 2
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