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Abstract

This paper is a study of the application of Bayesian Exponentially Tilted Empirical

Likelihood to inference about quantile regressions. In the case of simple quantiles we

show the exact form for the likelihood implied by this method and compare it with the

Bayesian bootstrap and with Jeffreys’ method. For regression quantiles we derive the

asymptotic form of the posterior density. We also examine MCMC simulations with a

proposal density formed from an overdispersed version of the limiting normal density. We

show that the algorithm works well even in models with an endogenous regressor when

the instruments are not too weak.
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1 Introduction

Recent work by Schennach (2005) has opened the way to a new Bayesian treatment of quantile

regression. In this paper we shall explain how this method may be applied to quantile

regression both when regressor variables are exogenous and when they are endogenous but

instrumental variables are available. We give an explicit form for the posterior density of

quantiles and a comparison with the method of Jeffreys (1961). We give several examples

using both real and artifical data and explore the consquences of having an instrument weakly

correlated with the endogenous regressor.

In the remainder of this section we briefly describe previous proposals for Bayesian infer-

ence about quantiles and quantile regressions . Section 2 describes Schennach’s method and

its application to quantiles. In section 3 we compare her method with the Bayesian bootstrap

posterior. In section 4 we give the application to quantile regression and in section 5 we give

the application of the method to estimation of structural quantile models with endogenous

regressors. In an appendix we derive the limiting (normal) form of the posterior density.

The earliest Bayesian method for quantiles that we know of is Jeffreys’ substituttion

posterior for the median (see Jeffreys (1961), Monahan and Boos (1992), and Lavine (1995)).

If n1 is the number of observations less than or equal to θ and n0 the number great than θ

then Jeffreys pointed out that if θ is the median the probability that n1 observations are less

than it and n0 = n− n1 are greater is nCn12
−n and so proposed

p(θ|data) ∝
1

n1!n0!
(1)

as a posterior density for the median, assuming a uniform prior.1 Note here that this proposal

is not based on the distribution of the data but on the distribution of a function of the data

and the parameter. Therefore, it is not a valid posterior in the sense that it does not

follow from Bayes’ rule (Monahan and Boos (1992)).2 Nonetheless, this proposal has been
1We owe this reference to Jeffreys’ proposal to Roger Koenker.
2Monahan and Boos (1992) pointed out that the normalising constant is not “the marginal of any recog-

nizable quantity.”
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studied by e.g. Lavine (1995) and Dunson and Taylor (2005) as an approximation to a valid

posterior. Following Lavine (1995) and Dunson and Taylor (2005), we call this proposal

Jeffreys’ substitution posterior or simply Jeffreys’ posterior. This is a step function. We

shall show in section 3 that Schennach’s method for the median is numerically very close to

Jeffreys’ even for quite small n.

Jeffreys’ argument would naturally lead to

p(θτ |data) ∝
τn1(1− τ)n0

n1!n0!
∝

φn1

n1!n0!
, φ =

τ

1− τ
(2)

as an approximate posterior density for the τ ′th quantile θτ with n1 as the number of obser-

vations less than or equal to θτ and n0 the number greater than it. Lavine (1995) extended

Jeffreys’ approach to a vector of quantiles, replacing the binomial expression underlying (2)

with a multinomial. Dunson and Taylor (2005) in turn extended Lavine’s work to handle a

vector of quantile regression functions and proposed a Markov Chain Monte Carlo (MCMC)

algorithm for sampling the posterior. Yu and Moyeed (2001) propose Bayesian inference

about quantile regressions using as a likelihood an asymmetric Laplace distribution for the

error term u in a linear model of the form

p(u) ∝ exp{−ρτ (u)}

where ρτ (u) is the check function ρτ (u) = u(τ − 1(u ≤ 0)) and u = Y −X ′βτ . This reduces

to p(u) = exp{−|u|} for median regression. They suggest an MCMC algorithm for sampling

the posterior. Kottas and Gelfand (2001) propose median regression using nonparametric

median zero distributions for the error term in a linear model. Chamberlain and Imbens

(2003) note that it is straightforward to compute the Bayesian bootstrap posterior density

in quantile regression by repeatedly solving the problem

βτ = arg min
t

n∑
i=1

ρτ (viui), (3)
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where the {vi} are iid unit exponential variates and ui = Yi − X ′
it. (This problem may be

solved, for example, using Koenker’s quantile regression R function with unit exponential

weights as rq(y˜x, tau, weights=rexp(n).)

2 Bayesian Exponentially Tilted Empirical Likelihood

Schennach’s (2005) method, called Bayesian exponentially tilted empirical likelihood (Betel),

provides a likelihood for randomly sampled data Y = (Y1, · · · , Yn)′ subject only to a set of

m moment conditions of the form E
(
g(Yi, θ)

)
= 0 where θ is a k dimensional parameter of

interest and k may be smaller, equal to or larger than m and g(., θ) is a vector of known

functions. The method may be thought of as construction of a likelihood supported on the

n data points that is minimally informative, in the sense of maximum entropy, subject to

the moment conditions. Specifically the probabilities {pi} attached to the n data points are

chosen to solve

max
p1,··· ,pn

n∑
i=1

−pi log pi s.t.
n∑

i=1

pi = 1,
n∑

i=1

pig(Yi, θ) = 0. (4)

The solutions of this problem, well known in the maximum entropy literature, e.g. Jaynes

(2003, p. 357), take the form

pi(θ) =
exp{λ(θ)′g(Yi, θ)}∑n

j=1 exp{λ(θ)′g(Yi, θ)}
(5)

where m vector λ, dependent on θ, satisfies

λ(θ) = arg min
η

n−1
n∑

i=1

exp{η′g(Yi, θ)}. (6)

The {λj} are the Lagrange multipliers corresponding to the m constraints in the problem

(4). For every θ solving (6) is a convex minimization problem and computationally straight-

forward.

The resulting likelihood for i.i.d data is
∏n

i=1 pi(θ) and this may be combined with a prior
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density on θ to yield the posterior density

p(θ|Y) = p(θ)
n∏

i=1

pi(θ) (7)

on support such that 0 is in the interior of the convex hull of the union of the {g(Yi, θ)}.3

3 Posterior Inference about Quantiles

Consider first Bayesian inference about quantiles for which an explicit representation of the

Betel posterior is available. The τ ′th quantile θτ satisfies the moment restriction E(gi(θτ )) =

0 where

gi(θτ ) = 1{Yi ≤ θτ} − τ (8)

and where 1{A} is the indicator function of the event A. Given a random sample Y =

(Y1, · · · , Yn)′ from a distribution F (·) and for any θτ in the support of the Betel likelihood

which in this case is [min Yi,max Yi), the Lagrange multiplier λ solving the problem (6)

satisfies the equation
n∑

i=1

gi(θτ )eλgi(θτ ) = 0

with solution

eλ(θτ ) =
τn0

(1− τ)n1
,

where n1 = ](Yi ≤ θτ ) and n0 = n−n1. Substituting this solution into the expression for the

posterior density (5) and assuming a uniform prior gives

p(θτ |Y) ∝
φn1

nn1
1 nn0

0

, φ =
τ

1− τ
. (9)

Like Jeffreys’ substitution posterior, the Betel posterior (9) is a piecewise constant density.

It is supported on [minYi,max Yi). For the median (9) gives p(θ0.5|Y) ∝ 1/nn1
1 nn0

0 which may
3Chernozhukov and Hong (2003) proposed a quasi–posterior using a classical GMM or GEL objective

function. However, we emphasize that equation (7) is a posterior derived from Bayes’ rule followed by taking
the limit that the number of nuisance parameters goes to infinity. In particular, the normalising constant is a
limit of marginals with nuisance parameters. For more discussion, see Schennach (2005).
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be compared with Jeffreys’ 1/n1!n0!.

Figure 1 shows the posterior density of the median from a random sample of size n = 50

using a uniform prior. The black step function is (9) and the red is Jeffreys’ posterior. It can

be seen that the two distributions are very similar. Both Jeffreys’ and Betel posterior distri-

butions of quantiles are always step functions with steps at the distinct observations. Highest

posterior density intervals with (possibly approximate) 95% content are straightforward to

construct.

Although Jeffreys’ and the Betel posteriors look quite similar, a formal comparison of the

two is subtle and needs more care; the ratio of the two posteriors does not pointwisely coverge

to 1 so that they are generally asymptotically different. However, the two posteriors look

similar and provide similar inference, because both of them are consistent and they behave

similarly in the neighborhood of the true quantile.

To be more precise, let pJ(θτ |Y) and pB(θτ |Y) be Jeffreys’ proposal and the Betel posterior

at θτ , respectively, where θτ is such that 0 < F (θτ ) < 1. Then, Stirling’s approximation

applied to n1! and n0! gives

pB(θτ |Y)
pJ(θτ |Y)

∝
n1!n0!
nn1

1 nn0
0

∝
√

n1n0

(
1 + O(

1
n1

)
) (

1 + O(
1
n0

)
)

, (10)

where θτ is guaranteed to be on the support of the two posteriors if n is large enough. Apply

the central limit theorem and the Delta method to n1/n and n0/n in (10), and we have an

asymptotic expression

pB(θτ |Y) = CnpJ(θτ |Y)
(√

F (θτ )(1− F (θτ )) + Op(
1√
n

)
)

(11)

for each θτ such that 0 < F (θτ ) < 1 and for some Cn that does not depend on θτ . Therefore,

pB(θτ |Y)
CnpJ(θτ |Y)

p→
√

F (θτ )(1− F (θτ )) 6= 1.

Note that this is not a rescaling issue, because the limit in the right–hand side depends on
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the parameter value θτ .

Then, why does Jeffreys’ proposal look so similar to the Betel? In order to answer this

quation, let θ0
τ be the true quantile so that F (θ0

τ ) = τ . It then follows from equation (11)

that
pJ(θτ |Y)
pJ(θ0

τ |Y)
=

pB(θτ |Y)
pB(θ0

τ |Y)
·

√
τ(1− τ) + Op( 1√

n
)√

F (θτ )(1− F (θτ )) + Op( 1√
n
)
. (12)

Since the Betel posterior is consistent, as is proved in the appendix, equation (12) shows that

Jeffreys’ proposal is also consistent in the sense that pJ(θτ |Y)/pJ(θ0
τ |Y)

p→ 0 when θτ 6= θ0
τ .

Moreover, equation (12) shows that Jeffreys’ proposal provides almost the same inference

as the Betel posterior when θτ is not too far from θ0
τ . That is, assuming that F (·) is continuous

at θ0
τ , we have

pB(θ0
τ |Y)

pB(θτ |Y)
· pJ(θτ |Y)
pJ(θ0

τ |Y)
=

√
τ(1− τ) + Op( 1√

n
)√

F (θτ )(1− F (θτ )) + Op( 1√
n
)
≈ 1, (13)

which shows that Jeffreys’ substitution posterior distinguishes θ0
τ from θτ almost as well as the

Betel posterior when θτ is close to θ0
τ . We summarize this result in the following proposition.

Proposition 1 Let F (·) be the true distribution that is continuous at the true quantile θ0
τ .

For any θτ 6= θ0
τ such that 0 < F (θτ ) < 1, we have

pJ(θτ |Y)
pJ(θ0

τ |Y)
p→ 0.

Moreover, for any ε > 0, there exists δ > 0 such that ||θ0
τ − θτ || < δ implies

∣∣ log
(pB(θ0

τ |Y)
pB(θτ |Y)

· pJ(θτ |Y)
pJ(θ0

τ |Y)

)∣∣ ≤ ε + op(1).

Proof: It follows from equation (12).

Proposition 1 is comparable to Lavine (1995), where he showed that Jeffreys’ proposal

provides conservative inference in large samples relative to the true (unknown) posterior. In
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particular, he showed that when θ0
τ 6= θτ ,

lim inf
n→∞

log
(pJ(θτ |Y)

pJ(θ0
τ |Y)

· `(F )
`(F̃ )

)
≥ 0 (14)

with probability one under F , where F is the true distribution with its τ th quantile θ0
τ , F̃

is an alternative distribution with its τ th quantile θτ , and `(F ) denotes the likelihood based

on F . Lavine (1995) interpreted inequality (14) as the one showing that Jeffreys’ proposal

distinguishes between θ0
τ and θτ less well than the true (unknown) likelihood and hence it leads

to conservative inference. Proposition 1 shows that Jeffreys’ proposal distinguishes θ0
τ from

θτ as well as the Betel posterior which is essentially semiparametric. Since Lavine compared

Jeffreys’ proposal to inference based on the true unknown likelihood, he was comparing

semiparametric inference to parametric one. Both Jeffreys’ and Betel are semiparametric

methods and we have found that they are as good as each other.

4 Comparison with the Bayesian Bootstrap

The Bayesian bootstrap of Rubin (1981) takes the data to be iid multinomial with proba-

bilities {pi}. An improper Dirichlet prior on these probabilities leads to a Dirichlet posterior

that assigns positive probability only to the distinct sample observations and in this respect

is similar to Betel. Parameters such as quantiles that can be expressed as functionals of the

data distribution have posterior distributions that can be calculated by repeatedly simulating

from the Dirichlet posterior distribution of the {pi} and calculating the parameter of interest.

As indicated in section 1 this amounts to repeatedly solving the problem (3).

To compare the Bayesian bootstrap (BB) and Betel (uniform prior) posteriors we consider

inference about the median – τ = 0.5 – using a sample n = 500 standard normal variates.

To get the BB posterior we solved the problem (3) 10,000 times using the method described

in section 1 and drew the histogram of the realizations. This is shown in figure 2. Note the

sparsity of the Bayesian bootstrap distribution which reflects the fact that there were only

162 distinct realizations among the 10,000 draws even though the sample size was 500. This
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arises because the criterion function in (3) is a piecewise linear function with knots at the

data points so solutions of the problem will always lie at one of the data points. Hence there

can be at most n points of support for the Bayesian bootstrap distribution and with n = 500

most of these will have probability so low that they will not occur in a sample of 10,000

realizations. By contrast, the Betel distribution, shown in red, provides positive probability

density over the relevant interval.

5 Quantile Regressions

Consider a simple τ ′th quantile regression with a single regressor

Pr(Y ≤ α(τ) + β(τ)X|X) = τ,

which implies unconditional moment condtions

E
(
1{Y ≤ α(τ) + β(τ)X} − τ

)
= E

(
X(1{Y ≤ α(τ) + β(τ)X} − τ)

)
= 0.

If we now define

g1i = 1{Yi ≤ α(τ) + β(τ)Xi} − τ and g2i = Xi(1{Yi ≤ α(τ) + β(τ)Xi} − τ),

we may compute the Lagrange multipliers λ1 and λ2 by

λ = arg min
η

n∑
i=1

exp{η1g1i + η2g2i}

and then calculate the posterior density according to (5).

Example 1: Demand for Fish. Figure 3 plots the joint posterior density of α(0.5)

and β(0.5) from a sample of n = 111 observations and under a uniform prior. The data are

Graddy’s (1995) fish market observations with Y as log quantity traded and X as log price.

To construct figure 3 the density was evaluated on a 100 × 100 grid of α, β values. As the
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figure shows the density consists of adjoining flat surfaces. The marginal densities of α and

β may be calculated by summing this grid across rows or across columns. Figure 4 shows

the marginal density of the price elasticity of demand at the 0.5 quantile found in this way.

The quantile regression estimate of β(0.5) was −0.41 which can be seen to be close to the

marginal posterior mode. (The quantile regression was computed using rq(Q˜P) in R, where

Q and P are the logarithms of quantity and price).

6 Quantiles with Endogenous Covariates

Quantile regression applied to the observations on price and quantity neglects the simultaneity

of these variables when the market is in equilibrium. This can be surmounted by use of

instrumental variables.

Following Chernozhukov and Hansen (2006) consider the model

Y = D′α(U) + X ′β(U), U |X, Z ∼ Uniform(0, 1)

in which D is statistically dependent on U, D′α(τ) + X ′β(τ) is strictly increasing in τ, and

Z is a set of instrumental variables that are independent of U but statistically dependent on

D. Then D′α(τ) + X ′β(τ) is the τ ′th quantile of Y conditional on X, Z. That is,

Pr(Y ≤ D′α(τ) + X ′β(τ)|X, Z) = τ (15)

The expression

D′α(τ) + X ′β(τ)

is what Chernozhukov and Hansen refer to as a structural quantile function. The fact (15)

then leads to unconditional moments of which the simplest are of the form

E
(
Xi(1{yi ≤ D′

iα(τ) + X ′
iβ(τ)} − τ)

)
= 0 and E

(
Zi(1{yi ≤ D′

iα(τ) + X ′
iβ(τ)} − τ)

)
= 0.
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We may then apply the Betel method using these moment functions. We illustrate first using

simulated data designed to capture the behavior of the posterior both when the instruments,

Z, are strongly correlated with the included endogenous variable D and when they are weakly

correlated with it, a situation known to lead to difficulties in linear models.

Example 2: Simulated Data: In the following example the data were generated with

X = 1 and eight instruments which are the columns of Z drawn from N(0, I8). The Y data

were generated by

Yi = Diα(Ui) + β(Ui) and Di = γ0 + Ziγ1 + Vi,

 β(Ui)

Vi

 ∼ N


 0

0

 ,

 1 0.8

0.8 1


 .

τ was set equal 0.25 and n = 500 was used. We specified α(s) = 1 for all s ∈ (0, 1). For the

first experiment the eight elements of γ1 were set equal to 1 and in the second they were set

equal to 0.1 The latter choice was intended to represent weak instruments. Figures 5 and

6 show the joint posterior densities of α(0.25) and β(0.25), the slope and intercept of the

structural quantile function at the 0.25 quantile. Figure 4, with γ1 = 1 shows a well behaved

joint posterior density centered round the truth. Figure 5, with weaker instruments, shows

a thicker tailed distribution with apparent multiple modes. Further experiments not shown

here show that as the coefficients on the instruments approach zero the joint density shows

many modes and thick tails.

Example 3: Demand for Fish Revisited: In this example we again use Graddy’s data,

also used by Chernozhukov and Hansen. Specifically, we use 111 observations on quantities

of fish traded and their price. We also use observations on two weather variables which might

be supposed to affect the supply of fish but not the demand. These are called “stormy” and

“mixed.”
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The τ ’th structural quantile function is

Q = α(τ)P + β(τ)

and this is estimated using three moment equations corresponding to stormy, mixed and the

unit variable.4 Figure 7 shows the joint posterior density of α(0.5) and β(0.5). The density

was evaluated on a 40 × 40 grid. It can be seen that there is only limited evidence of weak

instruments in the suggestion of a secondary mode. The marginal densities can be found

by summing over rows or columns and renormalising. The marginal density of the slope –

elasticity of demand – is shown in figure 7. An approximate 95% highest posterior density

interval runs from 0.1 to -2.5 and is marked in red. Chernozhukov and Hansen report a

point estimate of −0.9 (marked in blue) using these same instruments with a 95% confidence

interval running from 0 to −1.8. Note the minor mode in the marginal posterior density.

7 Markov Chain Monte Carlo with Endogenous Regressors

In this section we describe our experiments with Markov Chain Monte Carlo (MCMC) sam-

pling of the joint posterior in an instrumental quantile model. The computational experiments

show that a Metropolis-Hasting (MH) algorithm using as a proposal density an overdispersed

version of the limiting posterior density works well except when identification is weak. In this

case the Betel posterior may have multiple local modes and/or pathologically heavy tails and

it seems difficult to choose an appropriate proposal density. When the target distribution

has multiple modes and/or heavy tails, the performance of an MCMC is extremely sensitive

to the choice of a proposal distribution and the chain may capture only a local feature of the

target distribution, or the convergence can be too slow to be practical.

Schennach (2005) showed that the posterior of
√

n(θ − θ0) converges to a multivari-

ate normal distribution with mean zero and variance matrix equal to (G′Ω−1G)−1, where
4Graddy’s dataset also contains variables for on–shore weather conditions, and including them as exogenous

regressors will make the off-shore weather variables more plausible instruments. Note please that the main
purpose here is in an illustration of the method.
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G = E(∂g(y, θ0)/∂θ′) and Ω = E(g(y, θ0)g(y, θ0)′). Her derivation of the asymptotic form of

the posterior assumed differentiablity of the moment function and so does not cover quantile

problems. However, as we show in the appendix, a similar result obtains for quantile problems.

Specifically, the Betel posterior can be approximated in large samples by a multivariate nor-

mal density with mean zero and variance equal to (G′Ω−1G)−1, where G = ∂E(g(y, θ0))/∂θ′

and Ω = E(g(y, θ0)g(y, θ0)′). (Note that we need the differentiability of the expectation of

g(y, θ), not the differentiability of g(y, θ) itself.) Although computing a good estimate of G

could be difficult in practice, several methods are available, and a kernel method is one of

them. We give the method that we used in the algorithm below.

In the following experiments, we consider an instrumental quantile model with various

qualities of identification. Specifically, we use the same setup as example 2 with various

values of γ1. We set all eight elements of γ1 to be 1, 0.1, 0.08, or 0.05 to consider situations

of weak instruments. We consider n = 500 and τ = 0.5. Although one would want to use

MCMC when the parameter of interest is relatively high dimensional, for these experiments

we work with a two dimensional parameter, [α(0.5), β(0.5)]′ so that we may compare the

exact posterior with its Monte Carlo estimate.

The simulation design in example 2 implies the following moment condition:

m(a, b) =

 m1(a, b)

m2(a, b)

 =

 E(1{Y ≤ Da + b} − τ)

E(Z(1{Y ≤ Da + b} − τ))

 = 0

when a = α(τ) and b = β(τ). To obtain samples from the posterior, we used the following

MH algorithm.

Algorithm

1. Calculate α̂(τ) and β̂(τ) as follows.

(a) For each a ∈ R, calculate b̂(a) by solving minb
1
n

∑n
i=1 ρτ (Yi −Dia− b).

(b) Find α̂(τ) by solving mina ‖ 1
n

∑n
i=1 Zi(1{Yi ≤ b̂(a) + Dia} − τ) ‖2, which can be

solved by a one-dimensional grid search.
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(c) Find β̂(τ) = b̂(α̂(τ)), which be read from the data in steps 1 (a) and (b).

2. Calculate V̂ = (Ĝ′Ω̂−1Ĝ)−1:

Ω̂ =
1
n

n∑
i=1

gi(θ̂)gi(θ̂)′ and Ĝ =
1

nhn

n∑
i=1

 kτ,i Dikτ,i

Zikτ,i ZiDikτ,i

 ,

where θ̂ ≡
[
α̂(τ), β̂1(τ)

]′
, gi(θ) ≡ gi(a, b) ≡ [1, Z ′

i]
′ (1{Yi ≤ Dia + b} − τ), and kτ,i ≡

k(Yi−β̂(τ)−Diα̂(τ)
hn

). Here, k(·) is a pdf type kernel, and hn is a bandwidth choice. We

used the density of the standard normal as a kernel, and we set hn to be proportional

to n−
1
5 . (Specifically, we set hn = cn−

1
5 , where c is the interquantile range of ε̂i =

Yi − β̂(τ)−Diα̂(τ).)

3. Choose an initial value θj such that p(θj) > 0, where p(·) is the Betel posterior. For

this purpose, we drew θj from N(θ̂, V̂
n ) and checked if p(θj) > 0.

4. Draw θ∗ from N(θj ,
V̂
n κ2), where κ is a rescaling multiple chosen by the researcher.

5. Calculate r = min(1, p(θ∗)
p(θj)

), where p(θ) is the Betel posterior.

6. Set θj+1 =

 θ∗ with probability r

θj otherwise
.

7. Increment j and go to (4).

8. (Optional Adjustment) After some simulations, adjust V̂
n to the variance matrix esti-

mated from the simulations. Then go back to (4).

This algorithm needs some comments. Step 1 is for calculating an estimate of θ0. Since

it can be difficult to directly calculate the mode of the Betel posterior, we take an indi-

rect way of computation. Since all we need is a reasonably good estimate of θ0, we simply

minimize the quadratic form of the sample analogue of the concentrated moment condi-

tion, mc(a) ≡ m2(a, b(a)), where b(a) solves m1(a, b) = 0 for each a. By using the con-

centrated moment condition, the computation can be decomposed into a linear program-
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ming part (step a) and a one-dimensional grid search part (step b). Even when there

are several exogenous variables, the computation of this step is sufficiently easy. Step 2

calculates the variance of the asymptotic Betel posterior. Note that Ĝ is an estimate of

G = ∂E(g(x, θ0))/∂θ′ = E([1, Z ′
i]
′ [fε(0 | Di, Zi), Difε(0 | Di, Zi)]), where fε(· | D,Z) is the

conditional density of ε = Y − β(τ) −Diα(τ) given D and Z. Steps 4 – 7 describe an MH

sampler. The rescaling parameter κ is chosen by the researcher by checking the acceptance

rate of the chain. Although this step may need some trial–and–error in practice, we simply

used κ = 2.4/
√

2, as recommended in Gelman et al. (1995, p. 334).

Following the setup of example 2, we simulated artificial data by setting all eight elements

of γ1 to 1, 0.1, 0.08, and 0.05. With sample size n = 500, F statistics for the significance of

the instruments were 535.5, 9.0, 5.5, and 2.9, respectively. The p values of these statistics are

all less than 1%. The values of γ1 are intended to consider situations of strong and weak

instruments. For each simulated dataset, we ran 5 independent chains of 10, 000 iterations,

and collected the last 1, 000 realizations from each chain.(So the size of an MCMC sample is

5, 000(= 5×1, 000).) Figure 9 illustrates the posteriors and MCMC samples for the parameter

α1(0.5) under various values of γ1. The true marginal posteriors were calculated by numerical

integration and rescaling of the joint posteriors.

As we artificially made instruments weaker and weaker, the Betel posteriors started show-

ing multiple modes and heavy tails. The MCMC samples using our algorithm could capture

the posteriors until their tails became too thick. In particular, while panels (a)-(b) in figure

9 show a reasonable performance of the algorithm, panels (c)-(d) suggest that it may take

extremely long for the chain to converge. The slow convergence can be explained by the

fact that we used a normal distribution as a jumping rule when the target distributions were

multimodal and fat-tailed. Although a mixture of several fat-tailed distributions could be

considered as a proposal distribution, it may not be so practical because checking the patho-

logical shape of a posterior can be computationally infeasible when the parameter of interest

is high-dimensional. Therefore, more attention should be paid to checking diagnostics in

practice. Although there is no method to prove or confirm the convergence of a chain, there
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are several diagnostics available.5 For example, running several chains independently and

monitoring the autocorrelation functions (ACF) of them can be quite useful. If some of the

ACFs are found to be too sticky, then we might suspect the posterior to have a pathological

shape. As an example, we provide two pictures of ACFs from our experiments. Figure 10

shows two ACFs for the draws of α1(0.5), when γ1 was set to be 0.08. Each panel illustrates

an ACF estimated from the last 1, 000 realizations of one of the five chains we ran. We do

not provide the ACFs of all five chains, because they were all similar to one of these two

pictures. The fact that type I and type II ACFs show up together after 10, 000 iterations can

be noted as an indication of a multimodal and/or fat-tailed posterior.

Improving the performance of the algorithm would be an interesting discussion. It may

help to use a mixture of several fat-tailed distributions as a jumping rule. Using a prior with

a finite support could also be useful. However, all these possibilities seem to require a certain

amount of knowledge on the shape of the target posterior.

5We emphasize that the slow convergence of a chain does not invalidate the Betel posterior but that it only
makes computation more difficult. Note also that the slow convergence of the MCMC can be readily detected
as figure 10 shows.
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APPENDIX: THE LIMITING POSTERIOR DENSITY

In this appendix, we consider the asymptotic behavior of the Betel posterior under the

assumption of identification. In particular, we will show that our log-likelihood admits a

quadratic expansion in a local neighborhood of θ0. Although Schennach (2005) showed that

the Betel posterior has a normal approximation in large samples, her derivation assumed dif-

ferentiabiity of g(yi, θ), which does not cover quantile problems. We will derive the quadratic

expansion under alternative assumptions. It is also worthy of attention that the approximat-

ing normal distribution coincides with the frequentist sampling distribution of an efficient

generalized methods of moments (GMM) estimator. The approximation is local in the sense

that we only consider a small neighborhood of θ0. But, it is not a limitation under the

assumption of identification because the posterior becomes concentrated around θ0 and it

suffices to consider only a neighborhood of θ0. The normal approximation of the posterior

suggests a candidate jumping distribution in implementing MCMC in practice.

Assumption A Suppose that data are iid. Let Y denote the support of yi.

(i) E(g(yi, θ)) = 0 only when θ = θ0, where θ0 is in the interior of the parameter space

Θ ≡
{
θ ∈ Rk : 0 is in the interior of the convex hull of ∪n

i=1 {g(ȳi, θ)} for some n ∈ N

and some ȳ1, ȳ2, . . . , ȳn ∈ Y
}
.

(ii) ∂E(g(yi,θ))
∂θ′

∣∣
θ=θ0

exists, and it has a full column rank.

(iii) λ∗(θ) ≡ arg minλ E(exp(λ′g(yi, θ))) is differentiable at θ0. Note that λ∗(θ0) = 0 in view

of part (i). We further assume that λ∗(θ) = 0 only when θ = θ0.

(iv) supθ∈Θ ‖ λ∗(θ) ‖< ∞ and supy∈Y ,θ∈Θ ‖ g(y, θ) ‖< ∞.

(v) E(g(yi, θ)g(y, θ)′) is continuous at θ0 and nonsingular.

(vi) F = {λ′g(yi, θ) : λ ∈ Λ, θ ∈ Θ} is a Glivenko-Cantelli and Donsker class with a square-

integrable envelope function.

Parts (i), (ii), and (iii) assume identification. Part (iv) assumes a bounded moment

function. In quantile regression, it is satisfied when support of the regressors is bounded.

The assumption of a bounded moment function is commonly taken in the robust estimation
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literature (e.g., Huber (1964)). Part (vi) imposes a restriction on F but it allows the function

g(yi, θ) to be non-smooth with respect to θ. For example, letting yi = (Yi, X
′
i, Z

′
i)
′, g(yi, θ) =

Zi(1{Yi ≤ X ′
iθ}− τ) is well-known to satisfy this assumption (see e.g. van der Vaart (1998)).

One implication of parts (iv) and (vi) is that G = {exp(λ′g(yi, θ)) : λ ∈ Λ, θ ∈ Θ} is also

Glivenko-Cantelli and Donsker. Therefore, we in fact have

1
n

∑n
i=1 g(yi, θ)

p→ E(g(yi, θ)) (16)

1
n

∑n
i=1 g(yi, θ)g(yi, θ)′

p→ E(g(yi, θ)g(yi, θ)′) (17)

1
n

∑n
i=1 λ′g(yi, θ)

p→ E(λ′g(yi, θ)) (18)

1
n

∑n
i=1 exp(λ′g(yi, θ))

p→ E(exp(λ′g(yi, θ))), (19)

all uniformly in θ and λ. Note that it follows from (19) that

λn(θ) ≡ argmin
λ

1
n

n∑
i=1

exp(λ′g(yi, θ))
p→ λ∗(θ) (20)

uniformly in θ. Combining (18) and (19) with (20), we also know that

1
n

∑n
i=1 λn(θ)′gi(θ)

p→ E(λ∗(θ)′gi(θ)) (21)

1
n

∑n
i=1 exp(λn(θ)′gi(θ))

p→ E(exp(λ∗(θ)′gi(θ))), (22)

all uniformly in θ.

Now, we state a proposition that shows consistency and quadratic approximation of the

Betel posterior in large samples whose proof uses the convergence results outlined above.

Proposition A Suppose assumption A holds. Let wi(θ) ≡
exp

(
λn(θ)′g(yi,θ)

)
1
n

∑n
i=1 exp

(
λn(θ)′g(yi,θ)

) . Then,

for any θ 6= θ0, we have ∏n
i=1 wi(θ)∏n
i=1 wi(θ0)

p→ 0

as n → ∞. Moreover, for any ε > 0, there exists a sufficiently small δ > 0 such that
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‖ θ − θ0 ‖< δ implies

| 1
n

n∑
i=1

log wi(θ) +
1
2
(θ − θ0)′Ω−1(θ − θ0) |≤ ε + op(1)

as n →∞, where Ω−1 = (∂E(gi(θ))
∂θ′

∣∣
θ=θ0

)′E(gi(θ0)gi(θ0)′)−1(∂E(gi(θ))
∂θ′

∣∣
θ=θ0

) and op(1) does not

depend on θ.

Proof: We will write gi(θ) for g(yi, θ) for the sake of simplicity. In view of (21) and (22),

we first know that

1
n

n∑
i=1

log wi(θ)−
1
n

n∑
i=1

log wi(θ0)
p→ m(θ) ≡ E(λ∗(θ)′gi(θ))− log(E(exp(λ∗(θ)′gi(θ)))),

uniformly in θ. Note here that m(θ) < 0 for every θ 6= θ0 due to identification and Jensen’s

inequality. Hence, for every θ 6= θ0, we have

1
n

log(
n∏

i=1

wi(θ)/
n∏

i=1

wi(θ0))
p→ m(θ) < 0,

which is possible only when log(
∏n

i=1 wi(θ)/
∏n

i=1 wi(θ0))
p→ −∞. Therefore, the first part

of the proposition obtains.

The second part is obtained by expanding 1
n

∑n
i=1 log wi(θ). For heuristic arguments,

note that when θ is close enough to θ0, we have the following expansion:

1
n

n∑
i=1

log wi(θ) =
1
n

n∑
i=1

λn(θ)′gi(θ)− log(
1
n

n∑
i=1

exp(λn(θ)′gi(θ)))

≈ 1
n

n∑
i=1

λn(θ)′gi(θ)− log(1 +
1
n

n∑
i=1

λn(θ)′gi(θ) +
1
2
λn(θ)′(

1
n

n∑
i=1

gi(θ)gi(θ)′)λn(θ))

≈ −1
2
λn(θ)′(

1
n

n∑
i=1

gi(θ)gi(θ)′)λn(θ) ≈ −1
2
λ∗(θ)′E(gi(θ)gi(θ)′)λ∗(θ),

which shows that linearizing λ∗(θ) results in the desired approximation. The first approxi-

mation is due to the expansion of the exponential function, and the second one is obtained

by expanding the logarithm. We will formalize this heuristic argument in several steps. In
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the following, C will denote a generic constant.

Step 1 (Approximating the exponential part): We claim that for any ε > 0, there exists

δ > 0 such that ‖ θ − θ0 ‖< δ guarantees that

| 1
n

n∑
i=1

(
exp

(
λn(θ)′gi(θ)

)
− 1− λn(θ)′gi(θ)−

1
2
λn(θ)′gi(θ)gi(θ)′λn(θ)

)
|≤ ε + op(1)

as n →∞, where op(1) does not depend on θ.

To prove this claim, recall that | exp(x) − 1 − x − 1
2x2 |≤ C | x |3 when x belongs to a

bounded interval. Note that part (iv) in assumption A guarantees that λn(θ)′gi(θ) belongs

to a bounded interval for every θ ∈ Θ for sufficiently large n. Therefore, for sufficiently large

n, we have

| 1
n

n∑
i=1

(
exp

(
λn(θ)′gi(θ)

)
− 1− λn(θ)′gi(θ)−

1
2
λn(θ)′gi(θ)gi(θ)′λn(θ)

)
|

≤ 1
n

n∑
i=1

∣∣ exp
(
λn(θ)′gi(θ)

)
− 1− λn(θ)′gi(θ)−

1
2
λn(θ)′gi(θ)gi(θ)′λn(θ)

∣∣
≤ C

1
n

n∑
i=1

∣∣λn(θ)′gi(θ)
∣∣3 ≤ C ‖ λn(θ) ‖3= C ‖ λ∗(θ) ‖3 +op(1),

because supy,θ ‖ g(y, θ) ‖3< ∞; in view of (20) we know that op(1) does not depend on θ.

Now, continuity of ‖ λ∗(θ) ‖3 at θ0 proves the claim.

Step 2 (Approximating the logarithm): We claim that for any ε > 0, there exists δ > 0 such

that ‖ θ − θ0 ‖< δ guarantees that

∣∣ log
( 1
n

n∑
i=1

exp(λn(θ)′gi(θ))
)
− 1

n

n∑
i=1

λn(θ)′gi(θ)−
1
2
λn(θ)′

( 1
n

n∑
i=1

gi(θ)gi(θ)′
)
λn(θ)

∣∣ ≤ ε+op(1)

for n →∞, where op(1) does not depend on θ.
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First, recall that | log(x) − log(y) |≤ C | x − y | when x and y are bounded away from

zero. Therefore, for sufficiently large n, and θ close enough to θ0, we have

∣∣ log
( 1
n

n∑
i=1

exp(λn(θ)′gi(θ))
)
− log

(
1+

1
n

n∑
i=1

λn(θ)′gi(θ)+
1
2
λn(θ)′

( 1
n

n∑
i=1

gi(θ)gi(θ)′
)
λn(θ)

)∣∣
≤ C

∣∣ 1
n

n∑
i=1

(
exp(λn(θ)′gi(θ))− 1− λn(θ)′gi(θ)−

1
2
λn(θ)′gi(θ)gi(θ)′λn(θ)

)∣∣
≤ C ‖ λ∗(θ) ‖3 +op(1), (23)

where the last inequality is due to step 1. Similarly, recall that | log(1 + x) − x |≤ C | x |2

when x is bounded away from −1. Hence, for sufficiently large n and θ close enough to θ0,

we also have

∣∣ log
(
1 +

1
n

n∑
i=1

λn(θ)′gi(θ) +
1
2
λn(θ)′

( 1
n

n∑
i=1

gi(θ)gi(θ)′
)
λn(θ)

)
− 1

n

n∑
i=1

λn(θ)′gi(θ)−
1
2n

n∑
i=1

λn(θ)′gi(θ)gi(θ)′λn(θ)
∣∣

≤ C
( 1

n

n∑
i=1

||gi(θ)||||λn(θ)||+ 1
2n

n∑
i=1

||gi(θ)||2||λn(θ)||2
)2

≤ C||λn(θ)||2 + C||λn(θ)||3 + C||λn(θ)||4 ≤ C||λ∗(θ)||2 + op(1), (24)

where we used supy,θ ||g(y, θ)|| < ∞. Combining (23) and (24) with continuity of λ∗(θ) proves

the claim.

Step 3 (Approximating the Betel density): Now, note that step 2 proves that the log of the

Betel density is approximated by −1
2λn(θ)′Qn(θ)λn(θ), where Qn(θ) = 1

n

∑n
i=1 gi(θ)gi(θ)′.

That is, rewriting the result of step 2 yields

| 1
n

n∑
i=1

log wi(θ) +
1
2
λn(θ)′Qn(θ)λn(θ) |≤ ε + op(1)
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in some neighborhood of θ0 as n →∞. Therefore, from (17), (20), and continuity of Q(θ) =

E(gi(θ)gi(θ)′), we can choose δ > 0 such that ‖ θ − θ0 ‖< δ implies that

| 1
n

n∑
i=1

log wi(θ) +
1
2
λ∗(θ)′Q(θ0)λ∗(θ) |≤ ε + op(1) (25)

as n → ∞; since supy,θ ||g(y, θ)|| < ∞ and the convergence of λn(θ) is uniform, op(1) does

not depend on θ.

The remaining step is approximating λ∗(θ). Since λ∗(θ) is differentiable at θ0, we know

that there exists δ > 0 such that ‖ θ − θ0 ‖< δ implies that

‖ λ∗(θ)− L(θ0)(θ − θ0) ‖≤ ε, (26)

where L(θ) = ∂λ∗(θ)
∂θ′ . Since λ∗(θ) is implicitly defined from E(gi(θ) exp(λ′gi(θ))) = 0, we use

the implicit function theorem to obtain

L(θ0) = −Q(θ0)−1 ∂E
(
gi(θ) exp(λ′gi(θ))

)
∂θ′

∣∣
θ=θ0,λ=0

= −Q(θ0)−1Γ(θ0),

where Γ(θ0) = ∂E(gi(θ))
∂θ′

∣∣
θ=θ0

. Combining (25) and (26) proves the proposition.
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Figure 1: The figure shows Jeffreys’ posterior for the median in red and the Betel posterior
in black. The data are a random sample of size 50 from a normal distribution and in both
cases a uniform prior was assumed.
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Figure 2: The vertical lines represent the discrete Bayesian Bootstrap posterior distribution
while the red curve shows the Betel posterior. The data were 500 realizations from a standard
normal distribution and the priors were uniform.

26



Figure 3: This is the joint posterior density of slope and intercept in the median quantile
demand curve for fish. The data are Graddy’s 111 observations on price and quantity traded.
A uniform prior was assumed.
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Figure 4: This is the marginal posterior density of the elasticity of demand for fish. It was
calculated by summing the joint posterior density shown in figure 3 over the intercept rows.
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Figure 5: The figure shows the joint posterior density of slope and intercept in the 0.25
quantile regression using simulated data with n = 500 and eight strong instruments.
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Figure 6: The figure shows the joint posterior density of slope and intercept in the 0.25
quantile regression using eight weak instruments. The data are simulated with sample size
500. Note the appearance of secondary modes.
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Figure 7: This is the joint posterior density of slope and intercept in the median demand curve
for fish using two weather variables as instruments. The data are Graddy’s with n = 111.
Note the appearance of a potential minor mode; see also figure 8 that shows the marginal
posterior.
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Figure 8: This is the marginal posterior density of the median elasticity of demand for fish
found by summing out the intercept in the previous figure. The red lines mark a 95% highest
posterior density interval and the blue line represents a previously reported frequentist point
estimate.
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Panel (a) Panel (b)

Panel (c) Panel (d)

Figure 9: These figures show the true marginal posteriors and the MCMC samples under
various qualities of identification. As instruments became weaker, the marginal posteriors
showed multiple modes and heavy tails. Consequently, the MCMC samples could not get the
posteriors with the given number of iterations.
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Type I Type II

Figure 10: These figures are two autocorrelation functions (ACFs) from the five chains run for
the panel (c) in figure 9. Horizontal lines show 95% cofidence bounds for no autocorrelation.
The fact that two completely different ACFs still appear after 10,000 iterations can be noted
as an indication of the pathological shape of the target posterior.
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